Q.A and B working separately can do a piece of work in 9 and 12 days respectively.if they work for a day alternatively.A beginning, in how many days the work will be completed?
A) 10 1/4 days
B) 10 1/5 days
C) 9 1/4 days
D) 7 1/5 days
Related Questions
Q.
A and B undertook to do a piece of work for Rs. 4500. A alone could do it in 8 days and B alone in 12 days. With the assistance of C, they finished the work in 4 days. C’s share of money is:
A) Rs. 375
B) Rs. 750
C) Rs. 1500
D) Rs. 2250
Q.
A and B can complete a piece of work in 12 days and 18 days respectively. A being to do the work and they work alternately one at a time for one day each. The whole work will be completed in
A) 43/3 days
B) 47/3 days
C) 49/3 days
D) 56/3 days
Q.
A man, a woman and a boy together complete a place of work in 3 days. If a man alone can do it in 6 days and a boy alone in 18 days, how long will a woman take to complete the work?
A) 9 days
B) 21 days
C) 24 days
D) 27 days
Today's Challenging Question
Q.
Ajay & Bimal can do a price of work in 10 days, Bimal & Chetan can do in 15 days and Chetan and Ajay in 20 days. They work together for 6 days and then Ajay leaves and now Bimal & Chetan work together for 4 more days. If Bimal leaves, how long will Chetan take to finish the work?
A) 12 days
B) 10 days
C) 16 days
D) none 1 members solved
Solve Challenging question
Q.
Ajay & Bimal can do a price of work in 10 days, Bimal & Chetan can do in 15 days and Chetan and Ajay in 20 days. They work together for 6 days and then Ajay leaves and now Bimal & Chetan work together for 4 more days. If Bimal leaves, how long will Chetan take to finish the work?
A) 12 days
B) 10 days
C) 16 days
D) none
Correct Answer: 10 1/4 days
Solution:
(A and B)'s 2days work =1/9+1/12=7/36
multiply this fraction 7/36 by a number such that fraction remains less than 1,as the complete work to be done =1
multiply by 5;i.e. 10 days work =35/36
remaining work =1/36
on the 11th day it is working, A will do remaining work in 9*1/36, i.e.1/4 days
or the work is completed in 10 1/4 days.